
Heterogeneous Parallel
Computing

Chris Lamb

nvidia.com/cuda

CUDA C and OpenCL

© NVIDIA Corporation 2008

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ Inc. All rights reserved.

Graphics Processing Unit

© NVIDIA Corporation 2008

“GPU Computing” makes you think
of this…

© NVIDIA Corporation 2008

But with CUDA you also get…

146X 36X 19X 17X 100X

149X 47X 20X 24X 30X

© NVIDIA Corporation 2008

1999
GeForce 256

22M Trans

2002
GeForce4
63M Trans

2003
GeForce FX
130M Trans

2004
GeForce 6

222M Trans

1995
NV1

1M Trans

2005
GeForce 7

302M Trans

2008
GeForce GTX 200

1.4 Billion
Transistors

2006-2007
GeForce 8

754M Trans

GPUs Are Fast

GFLOPS
G80

2004 2003
Jan Jun Apr May Nov

2005 2006

250

0

500

750

1000

June
2008

GT200

Quad Core Xeon
3 GHz (96 GFLOPS)

G70

© NVIDIA Corporation 2008

GT200 – Consumer Supercomputer

   GT200 theoretical peak performance:
   1 TFLOPS single precision
   87 GFLOPS double precision
   Raw memory bandwidth: ~142 GB/sec
   Linpack (DGEMM) 95% of peak: sustained 82.4 GFLOPS

   8 node (8U!) cluster achieves Linpack Rmax 1.25 TFLOPS

   Video game market subsidizes R&D
   > 100 million units shipped
   Economies of scale at work: GTX295 costs <$500!
   All NVIDIA cards since 2006 support CUDA

© NVIDIA Corporation 2008

Building a 100TF datacenter

CPU 1U
Server

Tesla 1U
System

10x lower cost
21x lower
power

4 CPU cores

0.07 Teraflop

$ 2000

400 W
1429 CPU servers

$ 3.1 M

571 KW

4 GPUs: 960 cores

4 Teraflops

$ 8000

700 W
25 CPU servers

25 Tesla systems

$ 0.31 M

27 KW

© NVIDIA Corporation 2008

“Fast” = High Throughput

   How to design an architecture for throughput?

   Throughput vs Latency

   Maximize parallelism

   Graphics is a throughput problem

   So is scientific computing and many other important
and emerging problems!

© NVIDIA Corporation 2008

The Trend

   Era of faster CPUs is over
   There won’t be 10GHz chips

   “Moore’s Law” => more transistors => wider units
   It’s got to be parallel to be fast

   Not just NVIDIA party line – everyone’s saying this

   GPUs are already at where CPU are going
   CPU today = 8 cores
   GT200 = 240 cores

© NVIDIA Corporation 2008

NVIDIA GPU Architecture

Communication Fabric

M
em

ory &
 I/O

Fi

xe
d

Fu
nc

tio
n

A
cc

el
er

at
io

n

240 scalar cores

On-chip memory

Texture units

GT200

© NVIDIA Corporation 2008

SM

DP

SFU

MT Issue

Inst. Cache

Const. Cache

SFU

Memory

SP SP

SP SP

SP SP

SP SP

Streaming Multiprocessor (SM)
   8 scalar cores (SP) per SM

   16K 32-bit registers (64KB)
   usual ops: float, int, branch, …
   special ops: exp, sin, cos, sqrt, mul24, saturate, …
   synchronization support

   Shared double precision unit
   IEEE 754 64-bit floating point
   fused multiply-add
   full-speed denorm. operands and results

   Direct load/store to memory
   high bandwidth (~142 GB/sec)

   Low-latency on-chip memory
   16KB available per SM
   shared amongst threads of a block
   supports thread communication

SM

© NVIDIA Corporation 2008

Key Architectural Ideas

   SIMT (Single Instruction Multiple Thread) execution
   threads run in groups of 32 called warps
   threads in a warp share instruction unit (IU)
   1 instruction x 32 threads issued in 4 clocks
   HW automatically handles divergence

   Hardware multithreading
   HW resource allocation & thread scheduling
   HW relies on threads to hide latency
   any warp not waiting for something can run
   context switching is (basically) free

SM

DP

SFU

MT Issue

Inst. Cache

Const. Cache

SFU

Memory

SP SP

SP SP

SP SP

SP SP

© NVIDIA Corporation 2008

How do you write fast code?

   Task parallelism is short lived…
   More cores, more memory latency

   Data parallel is the future
   Express a problem as data parallel....
   Maps automatically to a scalable architecture

   CUDA architecture provides an insight into a data
parallel future

© NVIDIA Corporation 2008

CUDA – NVIDIA’s Parallel Computing
Architecture

ATI’s Compute
“Solution”

   PTX ISA and hardware
compute engine

   Includes a C-compiler &
support for OpenCL and
 DX11 Compute

   Architected to natively
support all
computational interfaces
 (standard languages and
APIs)

© NVIDIA Corporation 2008

Shared back-end compiler,
optimization technology

and ISA

OpenCL and C for CUDA

Entry point for
developers who
prefer high-level C

Entry point for expert
developers who want

a powerful device
management API

Runs on the exact
same hardware

C for CUDA

© NVIDIA Corporation 2008

Hierarchy of concurrent threads

   Parallel kernel run by many threads
   all threads execute the same piece of code
   threads can take different paths through code

   Threads are grouped into thread blocks
   threads in the same block can cooperate

   Threads/blocks have unique IDs

Thread t

t0 t1 … tB
Block b

© NVIDIA Corporation 2008

Memory hierarchy

   Thread has registers

   Block has shared memory
   Fast access by threads (fast like registers/cache)

   Device has off-chip global memory
   Same DRAM used to store images for graphics

   memcpy over PCIE to/from host memory

Thread t

t0 t1 … tB
Block b

© NVIDIA Corporation 2008

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // Run N/256 blocks of 256 threads each
 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
}

Device Code

© NVIDIA Corporation 2008

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // Run N/256 blocks of 256 threads each
 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);
}

Host Code

© NVIDIA Corporation 2008

Example: Host code for vecAdd

// allocate and initialize host (CPU) memory
float *h_A = …, *h_B = …;

// allocate device (GPU) memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float),

cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float),

cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

© NVIDIA Corporation 2008

Why is this different from a CPU?

   Different goals produce different designs
   GPU assumes work load is highly parallel
   CPU must be good at everything, parallel or not

   CPU: minimize latency experienced by 1 thread
   big on-chip caches
   sophisticated control logic

   GPU: maximize throughput of all threads
   # threads in flight limited by resources => lots of

resources (registers, bandwidth, etc.)
   multithreading can hide latency => skip the big caches
   amortize cost of control logic via SIMT

OpenCL

© NVIDIA Corporation 2008

CUDA C and OpenCL Programming Styles

   C for CUDA
   C with parallel keywords
   C runtime that abstracts driver API
   Memory managed by C runtime
   Generates PTX

   OpenCL
   Hardware API - similar to OpenGL
   Programmer has complete access to hardware device
   Memory managed by programmer
   Generates PTX

© NVIDIA Corporation 2008

Kernel Execution

  Total number of work-items = Gx x Gy
  Size of each work-group = Sx x Sy

  Global ID can be computed from work-group ID and
local ID

© NVIDIA Corporation 2008

Compute Unit 1

Private
Memory

Private
Memory

Work Item 1 Work Item
M

Compute Unit N

Private
Memory

Private
Memory

Work Item 1 Work Item
M

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

OpenCL Memory Model (Section 3.3)

  Shared memory model
   Relaxed consistency

  Multiple distinct address spaces
   Address spaces can be collapsed

depending on the device’s memory
subsystem

  Address spaces
   Private - private to a work-item
   Local - local to a work-group
   Global - accessible by all work-

items in all work-groups
   Constant - read only global space

   Implementations map this
hierarchy
   To available physical memories

Compute Device Memory

Compute Device

© NVIDIA Corporation 2008

VecAdd: Create Memory Objects
cl_mem memobjs[3];

// allocate input buffer memory objects
memobjs[0] = clCreateBuffer(context,
 CL_MEM_READ_ONLY | // flags
 CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float)*n, // size
 srcA, // host pointer
 NULL); // error code

memobjs[1] = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float)*n, srcB, NULL);

// allocate input buffer memory object
memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL, NULL);

Creating buffer objects: Section 5.2.1

© NVIDIA Corporation 2008

VecAdd: Program and Kernel
// create the program
cl_program program = clCreateProgramWithSource(
 context,
 1, // string count
 &program_source, // program strings
 NULL, // string lengths
 NULL); // error code
// build the program
cl_int err = clBuildProgram(program,

 0, // num devices in device list
 NULL, // device list
 NULL, // options
 NULL, // notifier callback function ptr
 NULL); // user data
// create the kernel
cl_kernel kernel = clCreateKernel(program, “vec_add”, NULL);

Creating program objects: Section 5.4.1
Building program executables: Section 5.4.2
Creating kernel objects: Section 5.5.1

© NVIDIA Corporation 2008

// set “a” vector argument
err = clSetKernelArg(kernel,
 0, // argument index
 (void *)&memobjs[0], // argument data
 sizeof(cl_mem)); // argument data size

// set “b” vector argument
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem));

// set “c” vector argument
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], sizeof(cl_mem));

VecAdd: Set Kernel Arguments

Setting kernel arguments: Section 5.5.2
Executing Kernels: Section 6.1
Reading, writing, and
 copying buffer objects: Section 5.2.2

© NVIDIA Corporation 2008

size_t global_work_size[1] = n; // set work-item dimensions

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel,
 1, // Work dimensions
 NULL, // must be NULL (work offset)
 global_work_size,

 NULL, // automatic local work size
 0, // no events to wait on
 NULL, // event list
 NULL); // event for this kernel
// read output array
err = clEnqueueReadBuffer(context, memobjs[2],
 CL_TRUE, // blocking
 0, // offset
 n*sizeof(cl_float), // size

 dst, // pointer
 0, NULL, NULL); // events

VecAdd: Invoke Kernel, Read Output

Setting kernel arguments: Section 5.5.2
Executing Kernels: Section 6.1
Reading, writing, and
 copying buffer objects: Section 5.2.2

© NVIDIA Corporation 2008

OpenCL Vector Addition Kernel

__kernel void vec_add (__global const float *a,
 __global const float *b,
 __global float *c)
 {
 int gid = get_global_id(0);
 c[gid] = a[gid] + b[gid];
 }

__kernel: Section 6.7.1
__global: Section 6.5.1
get_global_id(): Section 6.11.1
Data types: Section 6.1

© NVIDIA Corporation 2008

OpenCL for Nvidia

   OpenCL is fabulous for developers, the industry
consumers and is being driven in large part by
NVIDIA!

   The addition of OpenCL and DX11 compute to C for
CUDA offers a fantastic array of GPU Computing
choices for developers

   C for CUDA:
   Is the only runtime C environment for GPUs today
   Has 25,000+ users and 100+ applications
   Will evolve and co-exist with OpenCL and DX11 compute

Example Applications

© NVIDIA Corporation 2008

   NVIDIA team total production:
   top 10% in 2 weeks with 10 GPUs
   top 0.1% in less than a month with additional GPUs

Folding at Home

© NVIDIA Corporation 2008

Folding at Home Performance

© NVIDIA Corporation 2008

DGEMM Performance

GPU performance includes data copies over PCIe gen-2

© NVIDIA Corporation 2008

CAD Design For Apparel Cloth Physics

© NVIDIA Corporation 2008

CUDA N-Body Simulation

23B interactions/s
30K bodies

GeForce GTX 280:
 470 GFlops/s

© NVIDIA Corporation 2008

EvolvedMachines
   130X Speed up
   Simulate the brain circuit
   Sensory computing: vision, olfactory

EvolvedMachines

© NVIDIA Corporation 2008

Real-time Ray Tracing
  Real system
  NVSG-driven animation and interaction
  Programmable shading
  Modeled in Maya, imported through COLLADA
  Fully ray traced
2 million polygons
Bump-mapping
Movable light source
5 bounce reflection/refraction
Adaptive antialiasing

© NVIDIA Corporation 2008

Thank You!

  nvidia.com/cuda
  nvidia.com/opencl

